
 tests
and counting!

Bill Kalligas
Web developer for e-Travel SA

@billkall

Who we are

● e-Travel is one of the top 10 European Online
Travel Agencies

● IT crowd of around 20 developers

● 4 of which are working on site's UI / UX

● 2 years' old project

Well… actually…

● 35.000 tests back in April

● Currently it's like 45.000 tests...

To be more precise

Technologies Used

But... Why so many tests?

Still... Why so many??

● Many visitors and transactions

● Each line of code is considered an investment

How to integrate testing

● No tests = no commits

● Add tests in parallel with development

● If the code is too complicated to test, rewrite it

Development and maintenance

● D-I-S-C-I-P-L-I-N-E !!

● Generalized steps

● Constant clean up and refactorings

Proper Naming

● Spec tests are named after the name of what
they describe

○ Example: searches_controller.rb
■ searches_controller_spec.rb

● Feature tests are named after the user story
they describe

○ Example: Search form
■ autocomplete.feature
■ validations.feature

Proper Division

● Spec tests are under the same namespace of
what they describe

○ Example: searches /new.html.erb
■ searches / new.html.erb_spec.rb

● Feature tests are divided in conceptual groups
that cover all the stories of an action

○ Example: Search form
■ search / autocomplete.feature
■ search / validations.feature

Advantages

● Leads to self-explanatory code

● Ease of blending in for new members

● Ease of refactoring

● Safer releases

What's the catch??

● Run time needed

● Maintenance is really tedious and time
consuming

● 1 hour of coding = at least 2 hours of testing

Having tests means 100% bug free?

● NO !!

● Why ???
○ Unknown external factors
○ Development != Production
○ Different caching
○ Load balancer, etc

● Holes in initial specs

● Tests can't check what they don't know

Making the procedure faster

● Continuous Integration (CI) server

● Run only the tests you need

● Locally run tests in parallel

● Use of guard and spork

When not to write a test

● For code you don't have

● For tests you already have

Mistakes we learnt from

● Wrote too many feature tests

● Tested the same thing over and over

● Used solely selenium-webdriver

● VCR recordings

Future todo's

● Run tests in parallel on the CI server

● Add more agents to be able to run more
configurations in parallel

● Finish clean ups

● More coverage

Conclusion

● Test, test, test and test some more

● Tests are not a panacea

● Write specs for non functional tests

● Set a structure and follow it. It will reward you

Questions ??

