Ben Lovell

Saturday, 29 June 13

benlovell

> 9

Saturday, 29 June 13

Saturday, 29 June 13

dating platform

10k partner sites

Isn't everyone?

Saturday, 29 June 13

GPU clock speed

Saturday, 29 June 13

the growth

Saturday, 29 June 13

COIcs

Saturday, 29 June 13

the free lunch

Herb Sutter

Saturday, 29 June 13

Saturday, 29 June 13

Saturday, 29 June 13

parallelism

Saturday, 29 June 13

so there’s a

Saturday, 29 June 13

processes

processes

Saturday, 29 June 13

processes

fork (2)

Saturday, 29 June 13

zomg! I <3

NOBODY. EVER.

Saturday, 29 June 13

but there are ways

don't communicate hy
sharing memory...

Saturday, 29 June 13

Saturday, 29 June 13

> Celluloid

painless
multithreaded
programming

The Maintainers

@hbascule

@halorgium

@henlangfeld

concurrent object oriented
programming framework
build multithreaded

programs

as easily as you
build sequential programs

actor model

actor model

actor model

actor model

actor model

actor model

actor model

actor model

actor model

actor model

Saturday, 29 June 13

Saturday, 29 June 13

> Celluloid

Saturday, 29 June 13

celluloid actors

1l class Actor

2 attr reader :counter

3

4 def initialize

5 Qcounter = 0

6 @mutex = Mutex.new
7 end

8

9 def increment
10 @mutex.synchronize do
11 @Qcounter += 1
12 end
13 end
14 end

Saturday, 29 June 13

with celluloid

1l require "celluloid”
2

3 class Actor

4 include Celluloid
5 attr reader :counter
6

7 def initialize

8 Qcounter = 0

9 end

10

11 def increment

12 Qcounter += 1
13 end

14 end

Saturday, 29 June 13

Saturday, 29 June 13

celluloid actors

l require "celluloid”

2

3 class Actor

4 include Celluloid

5 end

6

7 actor = Actor.new

8 actor.inspect

9 #=> <Celluloid: :ActorProxy(Actor:0x3feaecbb38e0)>
10
11 Thread.main
12 #=> <Thread:0x007£f86290b8ce8 run>
13
14 actor.thread

=
Ul

#=> <Thread:0x007£862ad27a78 sleep>

Saturday, 29 June 13

1 module Celluloid

2 module ClassMethods

3 # Create a new actor

4. def new(*args, &block)

5 proxy = Actor.new(allocate, actor options).proxy
6 proxy. send (:initialize, *args, &block)
7 proxy

8 end

9 #.

10 end

11 &

12 end

Saturday, 29 June 13

celluloid actors

celluloid actors

< ETOOMANYACTS >

\ A_A
\ (00)\
(.)\) AYA

celluloid actors

celluloid actors

1l class Actor

2 # Wrap the given subject with an Actor
3 def initialize(subject, options = {})

4 @subject = subject

5 @mailbox = options[:mailbox] || Mailbox.new
6 @running = true

7

8 @thread = ThreadHandle.new(:actor) do
9 setup thread

10 run

11 end

12 oo

13 end

14 J

15 end

Saturday, 29 June 13

1l class Actor

2 def run

3 ...

L while @running

5 if message = @mailbox.receive(timeout interval)
6 handle message message

7 else

8 # No message indicates a timeout
9 @timers.fire
10 @receivers.fire timers
11 end
12 end
13 #...
14 shutdown
15 end
16 end

Saturday, 29 June 13

celluloid actors

what about ordering?

celluloid actors

fibers?

celluloid actors

l require "celluloid”

2

3 class Actor

4 include Celluloid

5

6 def compute all the things
7 sleep 2

8 puts "42"

9 end

10 end

11 //
12 actor = Actor.new
13 actor.compute all the things

14 puts "done!"”

=> 42
#=> done!

Saturday, 29 June 13

celluloid actors

require "celluloid”

class Actor
include Celluloid

def compute all the things
sleep 2
puts "42"

9 end

10 end

O NNOUILidbWN K

11 //

12 actor = Actor.new

13 actor.async.compute all the things
14 puts "done!”

16 #=> done!
17 #=> 42

Saturday, 29 June 13

celluloid actors

require "celluloid”

class Actor
include Celluloid

def compute all the things
sleep 2
Il42 "
end
end

O 00O NN O UT b WIDN =

= e
= O

actor = Actor.new K/

future = actor.future.compute all the things
puts "done!”

puts future.value

= e e e
O Ul b WN

17 #=> done! \
18 #=> 42

Saturday, 29 June 13

celluloid actors

require 'celluloid”

class Actor
include Celluloid

def compute all the things
sleep 2
puts "42"
end
end

OO0 OV WDNMK

RN —
N = O

actor = Actor.new
Celluloid: :Actor[:foo] = actor

RN —
B W

actor.inspect

#=> <Celluloid: :ActorProxy(Actor:0x3feb3ecl1308)>
Celluloid: :Actor[:foo0] .inspect

#=> <Celluloid: :ActorProxy(Actor:0x3feb3ecl1308)>

RN —
0 ~ O

Saturday, 29 June 13

celluloid actors

Saturday, 29 June 13

OO dWN M

O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

require "celluloid/autostart

class Actor
include Celluloid

def compute all the things
puts "42"
end

def zomg crash
raise "derp!"”

end
end t//'

supervisor = Actor.supervise as :foo

begin

Celluloid: :Actor[:foo].zomg crash
rescue

puts "whoops"”

end t//

Celluloid::Actor[:foo] .compute_all the_ things

#=> whoops
#=> 42

celluloid actors

require 'celluloid”

class Actor
include Celluloid

def compute all the things

O 0O NNO UL b WIN =

sleep 1
puts "42"
end

= =
= O

end t//

12 pool = Actor.pool

13

14 4.times { pool.compute all the things }
15

16 #=> 42 \\

=
~J

#=> 42 and so on...

Saturday, 29 June 13

there’s more

didn’t your proposal

so what’s wrong with

well, nothing

we got this far without a mention

Saturday, 29 June 13

Saturday, 29 June 13

Saturday, 29 June 13

JRuby

rubinius too!

Saturday, 29 June 13

that low hanging fruit?

3 5o

but there is one tip!

&Celluloid:: 1O

an event-driven IO system

that integrate
directly celluloid actors

unlike certain other evented
/0 systems
single event loop

as many actors as you want

the future of ruby

the future of ruby

Saturday, 29 June 13

the future of ruby

the future of ruby

@benlovell

Saturday, 29 June 13

