
zomgscale!
with Celluloid and JRuby

Ben Lovell

Saturday, 29 June 13

benlovell

_j
Saturday, 29 June 13

Saturday, 29 June 13

queen

Saturday, 29 June 13

dating platform
20m members
10k partner sites

Saturday, 29 June 13

we’re hiring
isn’t everyone?

Saturday, 29 June 13

Moore’s
Law

Saturday, 29 June 13

every few years
CPU clock speed

has doubled

Saturday, 29 June 13

but recently
the growth
has stalled

Saturday, 29 June 13

cores ++++++++
Saturday, 29 June 13

the free lunch
is over

Herb Sutter

Saturday, 29 June 13

harness the
POWER
in those cores

Saturday, 29 June 13

?
Saturday, 29 June 13

concurrency
parallelism

Saturday, 29 June 13

so there’s a
difference?

Saturday, 29 June 13

Saturday, 29 June 13

processes
orthreads

Saturday, 29 June 13

processes

memory constraints

communication

x cores == x processes?

Saturday, 29 June 13

processes
what about fork(2)
and CoW friendly GC

?

Saturday, 29 June 13

Saturday, 29 June 13

threads
sharing state

locks and granularity

races

hard to reason

Saturday, 29 June 13

zomg! I <3
multithreaded code

NOBODY. EVER.

Saturday, 29 June 13

but there are ways
to mitigate the madness

Saturday, 29 June 13

don’t communicate by
sharing memory...

...share memory
by communicating
go

Saturday, 29 June 13

Saturday, 29 June 13

Saturday, 29 June 13

painless
multithreaded
programming
for ruby

Saturday, 29 June 13

Tony Arcieri

Tim Carey-Smith

Ben Langfeld

@bascule

@halorgium

@benlangfeld

The Maintainers

Saturday, 29 June 13

a concurrent object oriented
programming framework which
lets you build multithreaded
programs out of concurrent
objects just as easily as you
build sequential programs
out of regular objects

Saturday, 29 June 13

based upon the
actor model

Saturday, 29 June 13

actor model
first proposed
way back in 1970

Saturday, 29 June 13

actor model
actors are isolated within
lightweight processes

Saturday, 29 June 13

actor model
actors possess
identity

Saturday, 29 June 13

actor model
absolutely
no shared state

Saturday, 29 June 13

actor model
actors don’t need to
compete for locks

Saturday, 29 June 13

actor model
are sent messages
asynchronously

Saturday, 29 June 13

actor model
messages are
buffered by a mailbox

Saturday, 29 June 13

actor model
the actor works off each
message sequentially

Saturday, 29 June 13

actor model
has implementations
in many languages

Saturday, 29 June 13

Saturday, 29 June 13

Saturday, 29 June 13

Saturday, 29 June 13

Saturday, 29 June 13

Saturday, 29 June 13

Saturday, 29 June 13

celluloid actors
automatically
synchronize state

Saturday, 29 June 13

 1 class Actor
 2 attr_reader :counter
 3
 4 def initialize
 5 @counter = 0
 6 @mutex = Mutex.new
 7 end
 8
 9 def increment
 10 @mutex.synchronize do
 11 @counter += 1
 12 end
 13 end
 14 end

Saturday, 29 June 13

with celluloid
the same example...

Saturday, 29 June 13

 1 require "celluloid"
 2
 3 class Actor
 4 include Celluloid
 5 attr_reader :counter
 6
 7 def initialize
 8 @counter = 0
 9 end
 10
 11 def increment
 12 @counter += 1
 13 end
 14 end

Saturday, 29 June 13

Saturday, 29 June 13

celluloid actors
are active objects
living within threads

Saturday, 29 June 13

 1 require "celluloid"
 2
 3 class Actor
 4 include Celluloid
 5 end
 6
 7 actor = Actor.new
 8 actor.inspect
 9 #=> <Celluloid::ActorProxy(Actor:0x3feaecbb38e0)>
 10
 11 Thread.main
 12 #=> <Thread:0x007f86290b8ce8 run>
 13
 14 actor.thread
 15 #=> <Thread:0x007f862ad27a78 sleep>

Saturday, 29 June 13

 1 module Celluloid
 2 module ClassMethods
 3 # Create a new actor
 4 def new(*args, &block)
 5 proxy = Actor.new(allocate, actor_options).proxy
 6 proxy._send_(:initialize, *args, &block)
 7 proxy
 8 end
 9 #...
 10 end
 11 #...
 12 end

Saturday, 29 June 13

celluloid actors
messages you send
are buffered via the
actor’s mailbox...

Saturday, 29 June 13

celluloid actors
... until the actor is
ready to act upon them

Saturday, 29 June 13

< ETOOMANYACTS >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Saturday, 29 June 13

celluloid actors
there is no
pattern matching
just regular method calls

Saturday, 29 June 13

celluloid actors
poll their mailbox
via a message loop

Saturday, 29 June 13

 1 class Actor
 2 # Wrap the given subject with an Actor
 3 def initialize(subject, options = {})
 4 @subject = subject
 5 @mailbox = options[:mailbox] || Mailbox.new
 6 @running = true
 7
 8 @thread = ThreadHandle.new(:actor) do
 9 setup_thread
 10 run
 11 end
 12 #...
 13 end
 14 #...
 15 end

Saturday, 29 June 13

 1 class Actor
 2 def run
 3 #...
 4 while @running
 5 if message = @mailbox.receive(timeout_interval)
 6 handle_message message
 7 else
 8 # No message indicates a timeout
 9 @timers.fire
 10 @receivers.fire_timers
 11 end
 12 end
 13 #...
 14 shutdown
 15 end
 16 end

Saturday, 29 June 13

celluloid actors
act upon messages
sequentially

Saturday, 29 June 13

what about ordering?
no guarantees

Saturday, 29 June 13

celluloid actors
dispatch calls
within fibers

Saturday, 29 June 13

fibers?
cooperative
lightweight
user space
some gotchas...

Saturday, 29 June 13

celluloid actors
can dispatch
synchronously

Saturday, 29 June 13

 1 require "celluloid"
 2
 3 class Actor
 4 include Celluloid
 5
 6 def compute_all_the_things
 7 sleep 2
 8 puts "42"
 9 end
 10 end
 11
 12 actor = Actor.new
 13 actor.compute_all_the_things
 14 puts "done!"

 #=> 42
 #=> done!

blocking

Saturday, 29 June 13

celluloid actors
can dispatch
asynchronously

Saturday, 29 June 13

 1 require "celluloid"
 2
 3 class Actor
 4 include Celluloid
 5
 6 def compute_all_the_things
 7 sleep 2
 8 puts "42"
 9 end
 10 end
 11
 12 actor = Actor.new
 13 actor.async.compute_all_the_things
 14 puts "done!"
 15
 16 #=> done!
 17 #=> 42

returns
immediately

Saturday, 29 June 13

celluloid actors
can perform tasks
in futures

Saturday, 29 June 13

 1 require "celluloid"
 2
 3 class Actor
 4 include Celluloid
 5
 6 def compute_all_the_things
 7 sleep 2
 8 "42"
 9 end
 10 end
 11
 12 actor = Actor.new
 13 future = actor.future.compute_all_the_things
 14 puts "done!"
 15 puts future.value
 16
 17 #=> done!
 18 #=> 42

returns immediately

blocks until a
value is yielded

Saturday, 29 June 13

celluloid actors
are accessible by
reference or name

Saturday, 29 June 13

 1 require "celluloid"
 2
 3 class Actor
 4 include Celluloid
 5
 6 def compute_all_the_things
 7 sleep 2
 8 puts "42"
 9 end
 10 end
 11
 12 actor = Actor.new
 13 Celluloid::Actor[:foo] = actor
 14
 15 actor.inspect
 16 #=> <Celluloid::ActorProxy(Actor:0x3feb3ec11308)>
 17 Celluloid::Actor[:foo].inspect
 18 #=> <Celluloid::ActorProxy(Actor:0x3feb3ec11308)>

Saturday, 29 June 13

celluloid actors
are fault tolerant
... let it crash!

Saturday, 29 June 13

 1 require "celluloid/autostart"
 2
 3 class Actor
 4 include Celluloid
 5
 6 def compute_all_the_things
 7 puts "42"
 8 end
 9
 10 def zomg_crash
 11 raise "derp!"
 12 end
 13 end
 14
 15 supervisor = Actor.supervise_as :foo
 16
 17 begin
 18 Celluloid::Actor[:foo].zomg_crash
 19 rescue
 20 puts "whoops"
 21 end
 22
 23 Celluloid::Actor[:foo].compute_all_the_things
 24
 25 #=> whoops
 26 #=> 42

crash the actor

fresh actor

take care of me!

Saturday, 29 June 13

celluloid actors
can be arranged
as pooled workers

Saturday, 29 June 13

 1 require "celluloid"
 2
 3 class Actor
 4 include Celluloid
 5
 6 def compute_all_the_things
 7 sleep 1
 8 puts "42"
 9 end
 10 end
 11
 12 pool = Actor.pool
 13
 14 4.times { pool.compute_all_the_things }
 15
 16 #=> 42
 17 #=> 42 and so on...

size*cores

load up the
workers

Saturday, 29 June 13

there’s more
timers
links
supervision groups
pub/sub
conditions

Saturday, 29 June 13

didn’t your proposal
mention JRuby?

Saturday, 29 June 13

so what’s wrong with
MRI?

Saturday, 29 June 13

well, nothing
but...

Saturday, 29 June 13

GLOBAL
INTERPRETER
LOCK
we got this far without a mention

Saturday, 29 June 13

MRI
not so bad when you’re
I/O bound

Saturday, 29 June 13

MRI
but what about
computation?

Saturday, 29 June 13

JRuby
has no such lock
rubinius too!

Saturday, 29 June 13

that low hanging fruit?
yeah, about that...

Saturday, 29 June 13

but there is one tip!
blocking I/O...
don’t

Saturday, 29 June 13

Saturday, 29 June 13

an event-driven IO system for
building fast, scalable network
applications that integrate
directly with celluloid actors

Saturday, 29 June 13

unlike certain other evented
I/O systems which limit you to a
single event loop per process
Celluloid::IO lets you make
as many actors as you want
system resources permitting

Saturday, 29 June 13

the future of ruby
concurrency
and parallelism?

Saturday, 29 June 13

the future of ruby
true thread-level
parallelism is available
right now!

Saturday, 29 June 13

Saturday, 29 June 13

the future of ruby
will MRI reconsider
the GIL?

Saturday, 29 June 13

the future of ruby
ask Matz!
(title collector)

Saturday, 29 June 13

thanks!
@benlovell ?

Saturday, 29 June 13

