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so there’s a
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processes

fork (2)
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zomg! I <3

NOBODY. EVER.
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but there are ways




don't communicate hy
sharing memory...
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> Celluloid




painless
multithreaded
programming




The Maintainers

@hbascule

@halorgium

@henlangfeld




concurrent object oriented
programming framework
build multithreaded

programs

as easily as you
build sequential programs
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celluloid actors




1l class Actor

2 attr reader :counter

3

4 def initialize

5 Qcounter = 0

6 @mutex = Mutex.new
7 end

8

9 def increment
10 @mutex.synchronize do
11 @Qcounter += 1
12 end
13 end
14 end
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with celluloid




1l require "celluloid”
2

3 class Actor

4 include Celluloid
5 attr reader :counter
6

7 def initialize

8 Qcounter = 0

9 end

10

11 def increment

12 Qcounter += 1
13 end

14 end
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celluloid actors




l require "celluloid”

2

3 class Actor

4 include Celluloid

5 end

6

7 actor = Actor.new

8 actor.inspect

9 #=> <Celluloid: :ActorProxy(Actor:0x3feaecbb38e0)>
10
11 Thread.main
12 #=> <Thread:0x007£f86290b8ce8 run>
13
14 actor.thread

=
Ul

#=> <Thread:0x007£862ad27a78 sleep>
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1 module Celluloid

2 module ClassMethods

3 # Create a new actor

4. def new(*args, &block)

5 proxy = Actor.new(allocate, actor options).proxy
6 proxy. send (:initialize, *args, &block)
7 proxy

8 end

9 #.

10 end

11 &

12 end
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celluloid actors




celluloid actors




< ETOOMANYACTS >
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celluloid actors




1l class Actor

2 # Wrap the given subject with an Actor
3 def initialize(subject, options = {})

4 @subject = subject

5 @mailbox = options[:mailbox] || Mailbox.new
6 @running = true

7

8 @thread = ThreadHandle.new(:actor) do
9 setup thread

10 run

11 end

12 oo

13 end

14  J

15 end
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1l class Actor

2 def run

3 ...

L while @running

5 if message = @mailbox.receive(timeout interval)
6 handle message message

7 else

8 # No message indicates a timeout
9 @timers.fire
10 @receivers.fire timers
11 end
12 end
13 #...
14 shutdown
15 end
16 end
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celluloid actors




what about ordering?




celluloid actors




fibers?




celluloid actors




l require "celluloid”

2

3 class Actor

4 include Celluloid

5

6 def compute all the things
7 sleep 2

8 puts "42"

9 end

10 end

11 //
12 actor = Actor.new
13 actor.compute all the things

14 puts "done!"”

=> 42
#=> done!
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celluloid actors




require "celluloid”

class Actor
include Celluloid

def compute all the things
sleep 2
puts "42"

9 end

10 end

O NNOUILidbWN K

11 //

12 actor = Actor.new

13 actor.async.compute all the things
14 puts "done!”

16 #=> done!
17 #=> 42
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celluloid actors




require "celluloid”

class Actor
include Celluloid

def compute all the things
sleep 2
Il42 "
end
end

O 00O NN O UT b WIDN =

= e
= O

actor = Actor.new K/

future = actor.future.compute all the things
puts "done!”

puts future.value

= e e e
O Ul b WN

17 #=> done! \
18 #=> 42
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celluloid actors




require 'celluloid”

class Actor
include Celluloid

def compute all the things
sleep 2
puts "42"
end
end

OO0 OV WDNMK

RN —
N = O

actor = Actor.new
Celluloid: :Actor[:foo] = actor

RN —
B W

actor.inspect

#=> <Celluloid: :ActorProxy(Actor:0x3feb3ecl1308)>
Celluloid: :Actor[:foo0] .inspect

#=> <Celluloid: :ActorProxy(Actor:0x3feb3ecl1308)>

RN —
0 ~ O
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OO dWN M

O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

require "celluloid/autostart

class Actor
include Celluloid

def compute all the things
puts "42"
end

def zomg crash
raise "derp!"”

end
end t//'

supervisor = Actor.supervise as :foo

begin

Celluloid: :Actor[:foo].zomg crash
rescue

puts "whoops"”

end t//

Celluloid::Actor[:foo] .compute_all the_ things

#=> whoops
#=> 42
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require 'celluloid”

class Actor
include Celluloid

def compute all the things

O 0O NNO UL b WIN =

sleep 1
puts "42"
end

= =
= O

end t//

12 pool = Actor.pool

13

14 4.times { pool.compute all the things }
15

16 #=> 42 \\

=
~J

#=> 42 and so on...
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there’s more




didn’t your proposal




so what’s wrong with




well, nothing




we got this far without a mention
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JRuby

rubinius too!
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that low hanging fruit?

3 5o




but there is one tip!




&Celluloid:: 1O




an event-driven IO system

that integrate
directly celluloid actors




unlike certain other evented
/0 systems
single event loop

as many actors as you want




the future of ruby




the future of ruby




Saturday, 29 June 13



the future of ruby




the future of ruby
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