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queen
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dating platform
20m members
10k partner sites
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we’re hiring
isn’t everyone?
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Moore’s
Law
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every few years
CPU clock speed

has doubled
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but recently
the growth
has stalled 
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cores ++++++++
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the free lunch 
is over

Herb Sutter
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harness the
POWER
in those cores
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concurrency
parallelism
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so there’s a
difference?
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processes
orthreads
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processes

memory constraints

communication

x cores == x processes?
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processes
what about fork(2)
and CoW friendly GC

?
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threads
sharing state

locks and granularity

races

hard to reason
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zomg! I <3 
multithreaded code

NOBODY. EVER.
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but there are ways
to mitigate the madness
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don’t communicate by 
sharing memory...

...share memory
by communicating
go
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painless 
multithreaded 
programming 
for ruby
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Tony Arcieri

Tim Carey-Smith

Ben Langfeld

@bascule

@halorgium

@benlangfeld

The Maintainers
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a concurrent object oriented 
programming framework which 
lets you build multithreaded 
programs out of concurrent 
objects just as easily as you 
build sequential programs 
out of regular objects
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based upon the
actor model
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actor model
first proposed 
way back in 1970
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actor model
actors are isolated within 
lightweight processes
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actor model
actors possess 
identity
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actor model
absolutely
no shared state
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actor model
actors don’t need to 
compete for locks
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actor model
are sent messages
asynchronously

Saturday, 29 June 13



actor model
messages are 
buffered by a mailbox
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actor model
the actor works off each 
message sequentially
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actor model
has implementations
in many languages
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celluloid actors
automatically
synchronize state
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  1 class Actor
  2   attr_reader :counter
  3 
  4   def initialize
  5     @counter = 0
  6     @mutex   = Mutex.new
  7   end
  8 
  9   def increment
 10     @mutex.synchronize do
 11       @counter += 1
 12     end
 13   end
 14 end
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with celluloid
the same example...
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  1 require "celluloid"
  2 
  3 class Actor
  4   include Celluloid
  5   attr_reader :counter
  6 
  7   def initialize
  8     @counter = 0
  9   end
 10 
 11   def increment
 12     @counter += 1
 13   end
 14 end
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celluloid actors
are active objects
living within threads
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  1 require "celluloid"
  2 
  3 class Actor
  4   include Celluloid
  5 end
  6 
  7 actor = Actor.new
  8 actor.inspect
  9 #=> <Celluloid::ActorProxy(Actor:0x3feaecbb38e0)>
 10 
 11 Thread.main
 12 #=> <Thread:0x007f86290b8ce8 run>
 13 
 14 actor.thread
 15 #=> <Thread:0x007f862ad27a78 sleep>
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  1 module Celluloid
  2   module ClassMethods
  3     # Create a new actor
  4     def new(*args, &block)
  5       proxy = Actor.new(allocate, actor_options).proxy
  6       proxy._send_(:initialize, *args, &block)
  7       proxy
  8     end
  9     #...
 10   end
 11   #...
 12 end
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celluloid actors
messages you send 
are buffered via the 
actor’s mailbox...
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celluloid actors
... until the actor is 
ready to act upon them

Saturday, 29 June 13



 ______________
< ETOOMANYACTS >
 --------------
        \   ^__^
         \  (oo)\_______
            (__)\       )\/\
                ||----w |
                ||     ||
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celluloid actors
there is no
pattern matching
just regular method calls
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celluloid actors
poll their mailbox
via a message loop
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  1 class Actor
  2   # Wrap the given subject with an Actor
  3   def initialize(subject, options = {})
  4     @subject = subject
  5     @mailbox = options[:mailbox] || Mailbox.new
  6     @running = true
  7 
  8     @thread = ThreadHandle.new(:actor) do
  9       setup_thread
 10       run
 11     end
 12     #...
 13   end
 14   #...
 15 end
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  1 class Actor
  2   def run
  3     #...
  4     while @running
  5       if message = @mailbox.receive(timeout_interval)
  6         handle_message message
  7       else
  8         # No message indicates a timeout
  9         @timers.fire
 10         @receivers.fire_timers
 11       end
 12     end
 13     #...
 14     shutdown
 15   end
 16 end
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celluloid actors
act upon messages 
sequentially
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what about ordering?
no guarantees
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celluloid actors
dispatch calls
within fibers
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fibers?
cooperative
lightweight
user space
some gotchas...
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celluloid actors
can dispatch
synchronously
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  1 require "celluloid"
  2 
  3 class Actor
  4   include Celluloid
  5 
  6   def compute_all_the_things
  7     sleep 2
  8     puts "42"
  9   end
 10 end
 11 
 12 actor = Actor.new
 13 actor.compute_all_the_things
 14 puts "done!"
 
 #=> 42
 #=> done!

blocking
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celluloid actors
can dispatch
asynchronously
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  1 require "celluloid"
  2 
  3 class Actor
  4   include Celluloid
  5 
  6   def compute_all_the_things
  7     sleep 2
  8     puts "42"
  9   end
 10 end
 11 
 12 actor = Actor.new
 13 actor.async.compute_all_the_things
 14 puts "done!"
 15 
 16 #=> done!
 17 #=> 42

returns
immediately
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celluloid actors
can perform tasks
in futures
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  1 require "celluloid"
  2 
  3 class Actor
  4   include Celluloid
  5 
  6   def compute_all_the_things
  7     sleep 2
  8     "42"
  9   end
 10 end
 11 
 12 actor  = Actor.new
 13 future = actor.future.compute_all_the_things
 14 puts "done!"
 15 puts future.value
 16 
 17 #=> done!
 18 #=> 42

returns immediately

blocks until a
value is yielded
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celluloid actors
are accessible by
reference or name
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  1 require "celluloid"
  2 
  3 class Actor
  4   include Celluloid
  5 
  6   def compute_all_the_things
  7     sleep 2
  8     puts "42"
  9   end
 10 end
 11 
 12 actor  = Actor.new
 13 Celluloid::Actor[:foo] = actor
 14 
 15 actor.inspect
 16 #=> <Celluloid::ActorProxy(Actor:0x3feb3ec11308)>
 17 Celluloid::Actor[:foo].inspect
 18 #=> <Celluloid::ActorProxy(Actor:0x3feb3ec11308)>
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celluloid actors
are fault tolerant
... let it crash!
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  1 require "celluloid/autostart"
  2 
  3 class Actor
  4   include Celluloid
  5 
  6   def compute_all_the_things
  7     puts "42"
  8   end
  9 
 10   def zomg_crash
 11     raise "derp!"
 12   end
 13 end
 14 
 15 supervisor = Actor.supervise_as :foo
 16 
 17 begin
 18   Celluloid::Actor[:foo].zomg_crash
 19 rescue
 20   puts "whoops"
 21 end
 22 
 23 Celluloid::Actor[:foo].compute_all_the_things
 24 
 25 #=> whoops
 26 #=> 42

crash the actor

fresh actor

take care of me!

Saturday, 29 June 13



celluloid actors
can be arranged 
as pooled workers
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  1 require "celluloid"
  2 
  3 class Actor
  4   include Celluloid
  5 
  6   def compute_all_the_things
  7     sleep 1
  8     puts "42"
  9   end
 10 end
 11 
 12 pool = Actor.pool
 13 
 14 4.times { pool.compute_all_the_things }
 15 
 16 #=> 42
 17 #=> 42 and so on...

size*cores

load up the 
workers
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there’s more
timers
links
supervision groups
pub/sub
conditions
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didn’t your proposal 
mention JRuby?
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so what’s wrong with 
MRI?
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well, nothing 
but...
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GLOBAL
INTERPRETER
LOCK
we got this far without a mention
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MRI
not so bad when you’re
I/O bound
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MRI
but what about
computation?
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JRuby
has no such lock
rubinius too!
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that low hanging fruit?
yeah, about that...
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but there is one tip!
blocking I/O...
don’t
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an event-driven IO system for 
building fast, scalable network 
applications that integrate 
directly with celluloid actors
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unlike certain other evented 
I/O systems which limit you to a 
single event loop per process 
Celluloid::IO lets you make 
as many actors as you want 
system resources permitting
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the future of ruby 
concurrency 
and parallelism?
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the future of ruby 
true thread-level 
parallelism is available 
right now!
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the future of ruby 
will MRI reconsider 
the GIL?
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the future of ruby 
ask Matz! 
(title collector)
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thanks!
@benlovell ?
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