
Konstantin Tennhard
Ruby Developer at flinc

Hi, I’m ...

Natural Language Processing (NLP)
with JRuby and OpenNLP

Motivation
Language and stuff ...

Sharing Information

Language Language is the most natural way to
communicate with others. It is
excellent for encoding information.

Flow of Information

Language

Flow of Information

Language

Representation

Language Natural language can be represented
as a series of sounds or as a series of
characters.

Intelligent Machines

Natural Language
Processing With the help natural language

processing methods, we enable
machines to understand and
process language.

Intermediate Processing,
e.g., Automatic Translation

Natural Language
Processing

Human-to-Machine Communication

Natural Language
Processing

… we won’t talk about.

Examples Machine Translation
Text Summarization
Opinion Mining

… we will talk about!

Examples Named Entity Recognition
Keyword Extraction

A Combination of Many Subjects

Natural Language
Processing

A Combination of Many Subjects

Natural Language
Processing

Linguistic Basics
No Ruby, yet. Hang in there.

Part of Speech
The part of speech or word class of a
word denotes its syntactic function.

Words can have multiple classes, e.g.,
‘to fly’ (Verb) and ‘a fly’ (Noun).

Word Stem

The stem of a word is the part of the
word that is common to all its derived
variants.

The stem of a word can be an artificial
construct.

Technology
Y u no MRI ...

JRuby

Ruby is a very expressive language
with excellent string processing
capabilities.

The JVM is a high performance
platform with true multi-threading
capabilities.

Excellent java libraries for natural
language processing exist.

Machine Learning Based NLP Toolkit

OpenNLP
OpenNLP is solely based on machine
learning methods. It uses maximum
entropy classification to perform
natural language processing tasks.

http://opennlp.apache.org/

http://opennlp.apache.org/
http://opennlp.apache.org/

Pre-Trained Models

OpenNLP
Maximum entropy classifiers have to
be trained before they can be utilized.

Pre-trained models can be
downloaded from SourceForge:
http://opennlp.sourceforge.net/
models-1.5/

http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/

Three Steps

OpenNLP
1. Load an existing model or create a

new one from your own training
data.

2. Initialize the classifier using this
model as input.

3. Perform the actual classification
task.

The Gems

OpenNLP

Minimal wrapper around the original
OpenNLP implementation:

• Automatic conversion between Ruby
and Java datatypes

• Unified Interface

Separate Gems for English and
German model files.

NLP Basics
Automating linguistic analyses ...

String → Sequence of Logical Units

Segmentation
The problem of segmentation is
concerned with splitting a text into a
sequence of logical units.

Different instances of this problem
exist.

Text → Sentences

Sentence Detection

Sentence detection is the process of
segmenting a text into sentences.

The problem is harder than it looks:
• Ruby is awesome. Ruby is great!

• “Stop it!”, Mr. Smith shouted across the
yard. He was clearly angry.

Text → Sentences

m = OpenNLP::English.sentence_detection_model
d = OpenNLP::SentenceDetector.new(m)
r = d.process <<-TEXT
Ruby is awesome. Ruby is great!
TEXT

r[0] # => "Ruby is awesome."
r[1] # => "Ruby is great!"

Sentence Detection

Sentence → Words

Tokenization

Tokenization is the task of detecting
word boundaries.

Challenges:
• Languages with no visual

representation of word boundaries

• Multiple separators

String → Linguistic Units

m = OpenNLP::English.tokenization_model
t = OpenNLP::Tokenizer.new(m)
r = t.process("I shot an elephant in my pajamas.")

r # => ["I", "shot", "an", "elephant", "in", "my",
"pajamas", "."]

Tokenization

Tokens → Tags

Part-of-Speech
Tagging

Part-of-Speech tagging is concerned
with identifying a word’s class in a
given context.

A common format for representing
Part-of-Speech tags is the Penn
Treebank tag set.

Tokens → Tags

m = OpenNLP::English.pos_tagging_model
t = OpenNLP::POSTagger.new(m)
r = t.process(%w[Ruby is awesome])

r[0] # => NNP
r[1] # => VBZ
r[2] # => JJ

Part-of-Speech
Tagging

Inflected word → Word stem

Stemming
Stemming is the processes of
applying a set of rules to remove
morphological suffixes.

Porter’s stemmer is probably the
most popular stemmer.

Inflected word → Word stem

https://github.com/raypereda/stemmify
require 'stemmify'

"programming".stem # => "program"

Stemming

https://github.com/raypereda/stemmify
https://github.com/raypereda/stemmify

Tokens → Names | Locations | …

Named Entity
Recognition

Named entities are noun phrases
that refer to individuals,
organizations, locations, etc.

Named Entity Recognition is
concerned with identifying named
entities in a given text.

Tokens → Names | Locations | …

tokens = %w[This summer EuRuKo comes to Athens
for two days on the 28th and 29th of June .]

m = OpenNLP::Models.
 named_entity_recognition_model(:location)
f = OpenNLP::NameFinder.new(m)
ranges = f.process(tokens)
ranges.map { |r| tokens[r] } # => ["Athens"]

Named Entity
Recognition

So"ware Engineering
Bringing it all together ...

Properties of
NLP Task

NLP tasks can o#en be expressed as a
sequence of steps that is executed
linearly.

Hence, we can use processing
pipelines to solve NLP problems.

Processing Pipelines
A processing pipeline is a set so#ware
components connected in series.

The output of one component is the
input of the next one.

t6d/composable_operations

Composable
Operations

A flexible Ruby implementation of a
processing pipeline:

• Operation represents a single
processing component.

• ComposedOperation represents a
processing pipeline, but can also be
used as a component in an other
pipeline.

https://github.com/t6d/composable_operations
https://github.com/t6d/composable_operations

Pre-Processing
Pipeline

Sentence Detection

Tokenization

POS Tagging

Stemming / Lemmatization

Clean Up

Advanced Tasks

Definition

require 'composable_operations'
include ComposableOperations

class PreProcessing < ComposedOperation
 use SentenceDetection
 use Tokenization
 use POSTagging
end

Pre-Processing
Pipeline

Sentence Detection Component

require 'opennlp'
require 'opennlp-english'
require 'opennlp-german'
require 'composable_operations'
include ComposableOperations

class SentenceDetection < Operation
 processes :text
 property :language, default: :en,
 converts: :to_sym,
 required: true,
 accepts: [:en, :de]

 def execute
 detector = OpenNLP::SentenceDetector.new(model)
 detector.process(text)
 end

 protected

 def model
 case language
 when :en
 OpenNLP::English.sentence_detection_model
 when :de
 OpenNLP::German.sentence_detection_model
 end
 end
end

Pre-Processing
Pipeline

Tokenization Component

require 'opennlp'
require 'opennlp-english'
require 'opennlp-german'
require 'composable_operations'
include ComposableOperations

class Tokenization < Operation
 processes :sentences
 property :language, default: :en,
 converts: :to_sym,
 required: true,
 accepts: [:en, :de]

 def execute
 tokenizer = OpenNLP::Tokenizer.new(model)
 Array(sentences).map do |sentence|
 tokenizer.process(sentence)
 end
 end

 protected

 def model
 # ...
 end
end

Pre-Processing
Pipeline

POS Tagging Component

require 'opennlp'
require 'opennlp-english'
require 'opennlp-german'
require 'composable_operations'
include ComposableOperations

class POSTagging < Operation
 processes :sentences
 property :language, default: :en,
 converts: :to_sym,
 required: true,
 accepts: [:en, :de]

 def execute
 tagger = OpenNLP::POSTagger.new(model)

 sentences.map.with_index do |sent, sent_idx|
 tags = tagger.process(sent)
 tags.map.with_index do |tag, tkn_idx|
 [sentences[sent_idx][tkn_idx], tag]
 end
 end
 end

 protected

 def model
 # ...
 end
end

Pre-Processing
Pipeline

Execution

PreProcessing.perform("Ruby is awesome. Ruby is
great!")

Returns:
#
[
[
["Ruby", "NNP"],
["is", "VBZ"],
["awesome", "JJ"],
[".", "."]
],
[
["Ruby", "NNP"],
["is", "VBZ"],
["great", "JJ"],
["!", "."]
]
]

Pre-Processing
Pipeline

Keyword Extraction
Let’s talk about the good stuff ...

TextRank

TextRank is a graph-based algorithm
heavily inspired by Google’s PageRank
algorithm.

The algorithm was published by Rada
Mihalcea and Paul Tarau: http://
acl.ldc.upenn.edu/acl2004/emnlp/
pdf/Mihalcea.pdf

http://acl.ldc.upenn.edu/acl2004/emnlp/pdf/Mihalcea.pdf
http://acl.ldc.upenn.edu/acl2004/emnlp/pdf/Mihalcea.pdf
http://acl.ldc.upenn.edu/acl2004/emnlp/pdf/Mihalcea.pdf
http://acl.ldc.upenn.edu/acl2004/emnlp/pdf/Mihalcea.pdf
http://acl.ldc.upenn.edu/acl2004/emnlp/pdf/Mihalcea.pdf
http://acl.ldc.upenn.edu/acl2004/emnlp/pdf/Mihalcea.pdf

Cooccurrence
Linguistics ... again!

... Ruby is awesome ...

Word window

Cooccurrence

Keyword Extraction
Pipeline

Preprocessing
Sentence Detection, Tokenization, POS Tagging, Normalization
through Stemming, Token Filtering

Cooccurrence Calculation

Coocurrence Graph Construction

Text Rank Calculation

Sorting and Extracting Nodes

1

2

3

4

5

class KeywordRanking < ComposedOperation

 use PreProcessingPipeline, filter: [/^NN/, /^JJ/]
 use CooccurrenceCalculation
 use CooccurrenceGraphConstruction
 use PageRankCalculation
 use NodeSortingAndExtraction

end

KeywordRanking.perform(...)

Keyword Extraction
Pipeline

The code can be found on Github:

 https://github.com/t6d/keyword_extractor

Be nice, it’s just some demo code – not for use in
production. ;)

Code

https://github.com/t6d/keyword_extractor
https://github.com/t6d/keyword_extractor

Natural Language Processing with JRuby and OpenNLP
by Konstantin Tennhard

GitHub: t6d
Twitter: t6d

Code can be found on GitHub:
* http://github.com/t6d/opennlp
* http://github.com/t6d/opennlp-english
* http://github.com/t6d/opennlp-german
* http://github.com/t6d/opennlp-examples

* http://github.com/t6d/keyword_extractor

* http://github.com/t6d/composable_operations
* http://github.com/t6d/smart_properties

Any questions? Feel free to approach me anytime
throughout the conference or send me a tweet, if that’s
what you prefer.

Summary

http://github.com/t6d/ruby-opennlp
http://github.com/t6d/ruby-opennlp
http://github.com/t6d/ruby-opennlp
http://github.com/t6d/ruby-opennlp
http://github.com/t6d/ruby-opennlp
http://github.com/t6d/ruby-opennlp
http://github.com/t6d/ruby-opennlp
http://github.com/t6d/ruby-opennlp
http://github.com/t6d/keyword_extractor
http://github.com/t6d/keyword_extractor
http://github.com/t6d/composable_operations
http://github.com/t6d/composable_operations
http://github.com/t6d/smart_properties
http://github.com/t6d/smart_properties

 _____ _ _ _ _ _ _ ______
 |_ _| | | | / \ | \ | | |/ / ___|
 | | | |_| | / _ \ | \| | ' /___ \
 | | | _ |/ ___ \| |\ | . \ ___) |
 |_| |_| |_/_/ __| _|_|_____/

Summary

